

I. INTRODUCTION
The architectures of web applications since the 90s have

evolved becoming more and more complex: from the simple
client-server paradigm passing to 3-tier applications up to
SOA and microservices architectures.

During the evolution of architectures, web protocols have
also evolved, but always using the HTTP protocol as a basis,
a protocol created for communications between client and
server and adapted in the following years for server-2-server
communications such as e.g. SOAP messages of SOA
architectures or JSON messages of REST architectures.

However, the use of the HTTP protocol brings with it a
functional overhead, such as e.g. redirect mechanism, or
restrictions, such as e.g. the management of parallel calls
and the non-asynchronicity of the protocol, which do not
make the communication between backend services present
in the same data center, or often even in the same network,
optimal.
Furthermore, the data sent each time has as informative
content both the information and what describes its meaning,
both the data and the metadata; despite the sending of
metadata in the messages exchanged, over the years there
has always been the need to create some document that
would define the interfaces, such as e.g. the WSDL or
OpenAPI YAML interfaces.

II. MDDP

A. Definition
MDDP (Metadata Data Decoupling Protocol) was born with
the aim of creating a protocol suitable for server-2-server
communications, reducing the payload of the data sent,
making it possible to send and receive data both in
synchronous mode and in asynchronous, and completely
separating data from metadata.
The MDDP application protocol uses TCP as the transport
layer protocol in its insecure form; a study is underway for
the use of MDDP in secure mode (MDDPS) which should
both be able to use TLS and support some other form of
encryption with offline key exchange.
The protocol consists mainly of two parts:

• The contract, which represents the data exchange
interface between client and server and contains all
the metadata.

• The message, which represents the information
content exchanged between client and server.

III. CONTRACT

A. Definition
The contract represents the interface exposed by the server.
The contract consists of:

• Contract Version – unsigned numeric
• Charset used for string representation
• Function List

B. Function List
The function represents the single service exposed by the
server.
The function consists of:

• Function name
• Function description
• Function Versions

C. Function Versions List
The function version represents the single version of the
single service exposed by the server.
The function version consists of:

• List of request message fields
• list of response message fields

D. Field
The field represents the data that is sent within the message.
It is made up of:

• Field Name
• Field Description
• Field Length, more than 0 if it have a fixed length, -1

for variable length
• Field Data Type, it could be:

Binary
String
Integer
Float
Long
Double
Boolean
Complex
List
Dictionary

• Subfields: present only if the Data Type is of the
Complex, List or Dictionary type, it contains the
subfields that represent the data type

E. Complex Data Type
The data type Complex represents a complex object and is
used in the MDDP protocol as the primary data type of the

MDDP - Metadata Data Decoupling Protocol
Paolo Ippolito - 2023 - version 1.0

content of the body or in fields where the use of a complex
object is expected.
It is made up of:

• Bitmap Length (short unsigned int) represented in
bytes length

• Bitmap – byte 0…N: bitmap of the fields present, for
each bit it represents the presence (value equal to '1'
or less (value equal to '0') of the sub-field

• Subfields list

F. List Data Type
The Data Type List is an object that contains a list of objects
of a single data type that is represented in the only subfield
present in the contract.

G. Dictionary Data Type
The Data Type List is an object that contains a list of key
objects - value of two data types that are represented in the
two subfields present in the contract.

IV. MESSAGE

The Message represent the data exchanged by client and
server and consists of a 16 byte long header and a body
containing the information content of the message.

A. Header
The MDDP message header is a 16 byte long binary buffer,
which contains the following data:

• Message Length – 4 byte unsigned integer:
represents the length of the entire message

• Protocol Version – 1 byte unsigned integer:
Represents the protocol version, currently the
default value of '1'

• Status Flag - 1 byte binary: Contains a bitmap that
represents various information about the status of
the message; only bit 0 is valued in the request, the
rest is valued in response by the server
- 0° bit - Message type: '1' if it is a response, '0' if

it is a request
- 1° bit - warning obsolete Contract version: it is

set to '1' by the server if a contract version less recent
than the one managed by the server is sent in the
request
- 2° bit - warning obsolete Function version: it is set

to '1' by the server if a function version less recent than
the one managed by the server is sent in the request

- 3° bit - unknown Contract version: it is set to '1' by
the server if a contract version not known by the server
is sent in the request

- 4° bit - unknown Function version: it is set to '1'
by the server if a function version not known by the
server is sent in the request

- 5° bit: unknown Function Number: it is valued at
'1' by the server if a function number not known by the
server is sent in the request

- 6° bit: message format error: it is set to '1' by the
server if the request message is not formatted correctly

- 7° bit: unknown Protocol version: it is set to '1' by
the server if a protocol version not known by the server
is sent in the request
• Contract Version - 2 byte numeric: version of the

contract used to generate the message
• Function Number - 2 byte numeric: number of the

function called to process the message
• Function Version - 2 byte numeric: version number

of the function called to process the message
• Correlation Key - 4 byte numeric: correlation key

used to match the request and response

B. Body
The body is composed of an object of type Complex which
represents the message and contains the data which is
interpreted through the contract with the selection of the
version of the function.

V. COMMUNICATION WORKFLOW
The message is sent from client c to server s.
The Server s reads the first 4 bytes of the header to be able

to recover the length n of the message and then the next n-4
bytes to be able to recover the whole message. Subsequently
it processes the next 12 bytes to verify that the header is
formally correct and that it contains correct references to the
contract, function and version of the function; in the event
that more updated versions are present, it sets the warning
flags of the obsolete versions in the response header, and in
the event that the versions are not compatible with what is
reported in the contract, it replies configure the error status
flags and echoes the body received.
Subsequently it begins to process the message and to extract
the request/response fields based on what is reported in the
contract; in the event of a non-formally correct message, the
status flag bit of the format error is raised and the received
body is echoed.

VI. CONCLUSIONS
The version of this protocol is born to optimize the
communication between server processes, but it could be
more optimizable in the future with the contribution of the
Open Source community.

APPENDIX

A. Fixed field length
There are represented the field length for all the types that
are not ignoring length in contract:
Integer 4 bytes
Float 4 bytes
Long 8 bytes
Double 8 bytes
Boolean 1 byte

B. Variable field length
The variable field length is an unsigned int, represented by 2
byte before the value of the field.
It could be used by this data types:

• Binary
• String
• Complex
• List
• Dictionary

LICENSE
MDDP © 2022 by Paolo Ippolito is licensed under
Attribution-ShareAlike 4.0 International. To view a copy of
this license, visit http://creativecommons.org/licenses/by-
sa/4.0/

REFERENCES
[1] Java implementation of MDDP: https://gitlab.com/ippolito/mddp
[2] RFC 2616 - Hypertext Transfer Protocol -- HTTP/1.1:

https://www.rfc-editor.org/rfc/rfc2616

